ДИСКУССИОННЫЙ ЭКСПЕРТНЫЙ ФОРУМ

Экспертный консенсус в дискуссии в интересах страны

24.11 25.11 2025

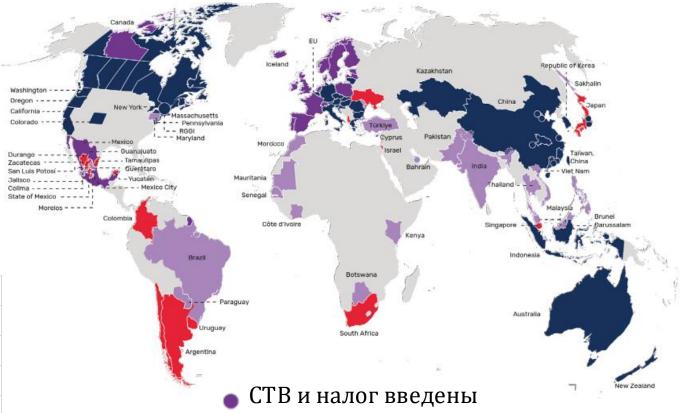
Низкоуглеродная трансформация и электроэнергетика России сегодня: проблемы или возможности?

Докладчик:

Макаров Игорь Алексеевич,

к.э.н., директор Института экономики природных ресурсов и изменения климата НИУ ВШЭ

- 2024 год стал самым теплым годом за всю историю наблюдений, в котором средняя глобальная температура была выше более чем на 1,5 °C среднего показателя за 1850–1900 годы
- Электроэнергетика крупнейший потребитель ископаемого топлива и эмитент парниковых газов (27%)

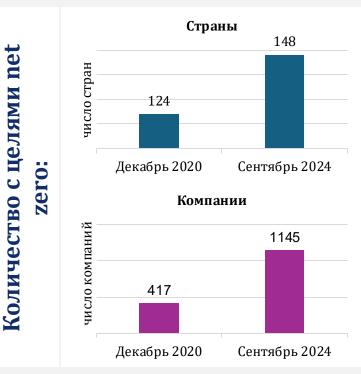


Энергетические выбросы ПГ и международная торговля

- Цена на углерод один из главных инструментов климатической политики
- Европейский СВАМ с 2026 года предполагает плату за прямые выбросы ПГ по 6 товарным группам + за косвенные выбросы по удобрениям и цементу.
- Импорт в ЕС из России товаров СВАМ попрежнему сохраняется

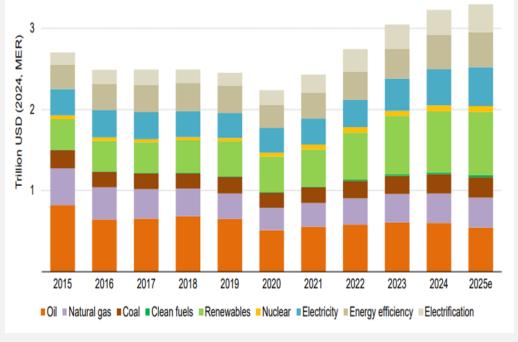
- СТВ введен
- Налог введен
- Цена на углерод на стадии развития

• Выбросы парниковых газов, связанные с потреблением электроэнергии, – один из факторов конкурентоспособности в международной торговле



✓ Удельные косвенные выбросы ПГ производителей России ниже большинства других стран, но выше, чем у Евросоюза

Внешние вызовы низкоуглеродной трансформации



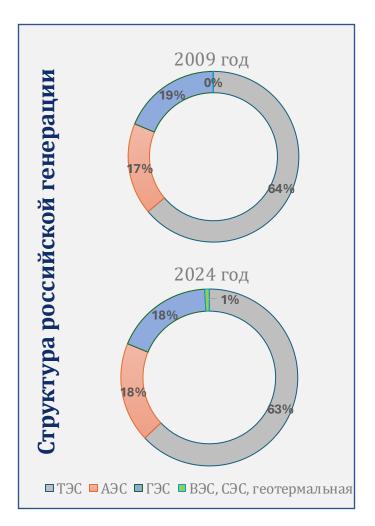
✓ Амбициозность климатических политик в мире растёт каждый год

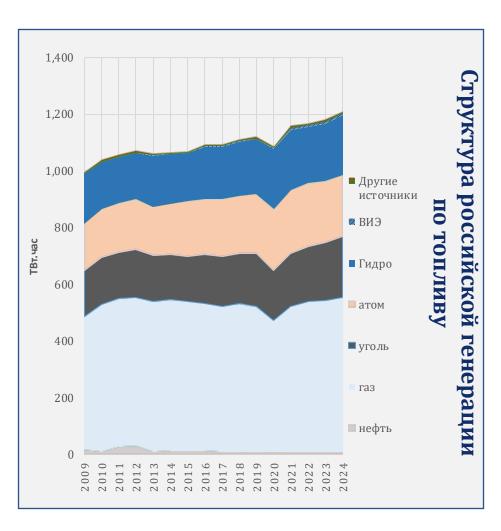
✓ Развитие новых ниш и технологий энергетического перехода

- Мировые инвестиции в энергетику в 2025 году составят 3,3 трлн долларов.
- Чистая энергетика достигнет **нового максимума** в 2,2 трлн долларов в 2025 г.

• Инвестиции в ископаемое топливо **сократятся** впервые с 2020 года

На Китай приходилось 39% мировых выбросов в секторе электроэнергетики в 2024 году, при этом Китай – лидер в приросте производства электроэнергии на ВИЭ и в продажах электромобилей



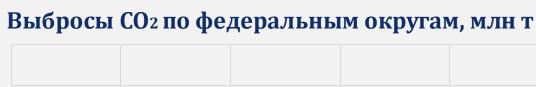

Готова ли российская электроэнергетика к настоящим вызовам?

- За 15 лет структура генерации в России стабильна: лидерство по-прежнему сохраняется за тепловой генерацией с преобладающей долей использования газа в качестве топлива;
- ГЭС и АЭС примерно по 20% в структуре генерации

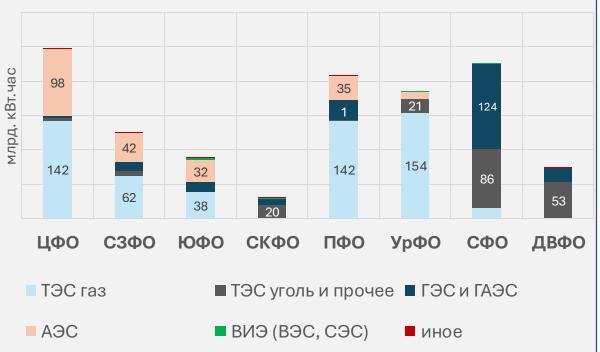
Выбросы углекислого газа в электроэнергетике

Выбросы СО2 в электроэнергетике России, млн т

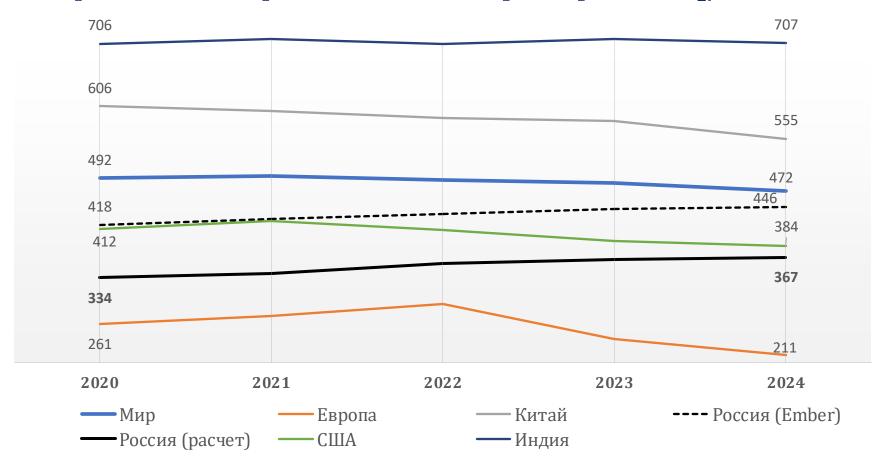
- Выбросы CO₂ в электроэнергетике имели тенденцию к росту за прошлые 5 лет на 5% в год за счет роста потребления угля и газа;
- «Лидер» по абсолютным выбросам CO₂ в электроэнергетике в 2024 году Сибирский федеральный округ


Среднегодовые (за 2020-2024 гг.) объемы выбросов СО2 при производстве электро-, теплоэнергии, млн т

• выбросы CO2 от производства тепловой энергии в CФO и ПФO сопоставимы и даже выше, чем совокупные выбросы в других ФО от электрической и тепловой энергии

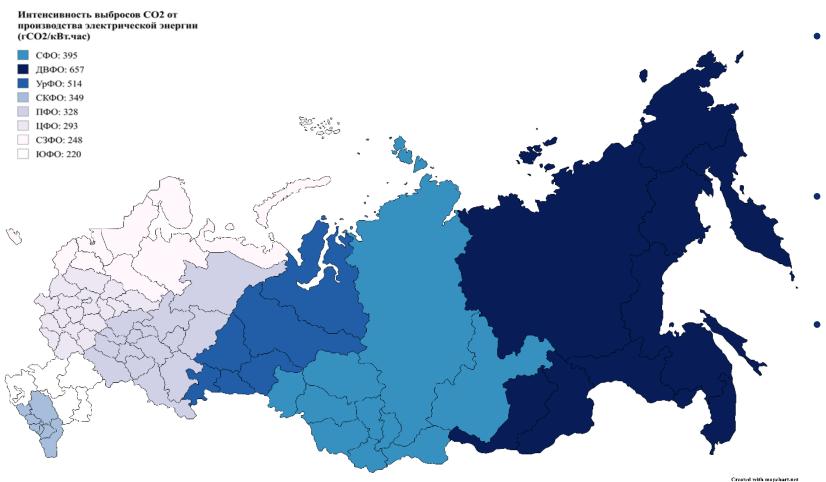

Выбросы углекислого газа в электроэнергетике

Структура производства электроэнергии в 2024г.



- Больше угля больше выбросов CO2: «лидер» среди ФО по абсолютным выбросам СФО
- Вырабатываешь больше ≠ больше эмитируешь СО2: кейс ЦФО и ПФО
- Приросты выбросов в 2021-2024 гг: СФО 7%, ДФО, ПФО 5%, ЦФО 3%

Углеродоемкость производства электроэнергии

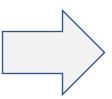

Углеродоемкость производства электроэнергии, гCO₂/кВт·час

- В России прирост углеродоемкости в 2024 г. к 2020 г. – 10%
- Углеродоемкость производства электроэнергии в России ниже, чем общемировой показатель, но в мире наблюдается тренд на снижение

Углеродоемкость производства электроэнергии

- Наиболее углеродоемким ФО является
 Дальневосточный федеральный округ.
- Далее идут Уральский и Сибирский федеральные округа.
- За ними с более чем 50%ой разницей ФО европейской части страны, где наименее углеродоемким является Южный ФО

Некоторые проблемные аспекты отрасли


Дефицит мощностей и отсутствие инвесторов

- К 2042 году необходимо увеличить мощности на 18%, до 299 ГВт
- К 2050 году мощности должны вырасти примерно на 30% к уровню 2023 г.

!!! В России есть территории, где имеется (прогнозируется) **дефицит** электрической энергии и мощности:

- Территории Иркутской области, Забайкальского края, Бурятии
- ОЭС Востока
- Территории ОЭС Юга
- Энергосистема Москвы и Московской области
- Территории Чукотского автономного округа, Сахалинской области, Камчатского края.

Необходимо новое строительство !!!

Последние отборы по строительству новых мощностей (КОМ НГО) признаны **несостоявшимися** из-за отсутствия заявок

Возраст электроэнергетики

Возраст производственных мощностей электроэнергетики России (по сост. на 2024-2025 гг.)

Тип генерации	Средний возраст оборудован ия, лет	Доля фондов старше 30 лет, %	Основные периоды ввода	Ключевые программы обновления
ТЭС	32-35	55-60	1960-е – 1980-е гг. (массовый ввод) ; 2010-е (новые ПГУ)	ДПМ ТЭС, программа модернизации тепловых мощностей (КОММод, 2019– 2031 гг.)
ГЭС/ГАЭС	45-55	65-70	1950-е – 1970-е гг. (Волго-Камский и Ангаро-Енисейский каскады)	Программа комплексной модернизации «РусГидро», 2011–2025 гг.
АЭС	30-35	40-45	1970-е – 1980-е гг.; новые блоки 2010-х («Ростовская-4», «Ленинград-2»)	Программа продления ресурса и строительства новых блоков Росатома (до 2035 г.)
виэ	3-7	<5	2014-2024 гг. (этапы ДПМ ВИЭ 1.0 и 2.0)	Программа ДПМ ВИЭ и ДПМ ВИЭ 2.0 (2014–2035 гг.) — ввод новых ВЭС и СЭС

!!! Объекты традиционной генерации (ТЭС, АЭС и ГЭС) имеют высокий уровень изношенности фондов

Отрасль возобновляемой генерации не перешагнула среднего возраста в 10 лет

Технологический суверенитет отрасли

Сегмент	Текущий уровень локализации (конец 2024 г.)	Официальная цель / плановый порог
Атомные блоки	> 95 % российских комплектующих	100 % к 2030 г.
Ветрогенераторы	≈ 65 – 70 % (минимум для ввода до 2024 г.)	требования ДПМ ВИЭ 2.0 с 2025 г. повышаются почти в 2 раза (≈ 80–85 %), целевой ориентир — полная локализация к концу программы (2035 г.)
Солнечные модули	≈ 70 % локальных компонентов на площадке «Хевел»; проект нормы — ≥ 85 %	в проекте Минпромторга для вводов 2025+— ≥ 85 %
Гидрооборудование	> 90 % для основных узлов; вся турбинно-генераторная часть производится в РФ (ЛМЗ, «Силовые машины»)	отрасль фактически достигла технологического суверенитета, формальных целей не установлено
Газовые турбины (ПГУ/ТЭС)	≈ 60–70 % (ГТЭ-65, ГТЭ-170, ГТД- 110М: российский корпус, РУ, генератор; часть силовой электроники импортная)	серийные поставки полностью отечественных турбин— до 8 шт. в 2025 г.; к 2028 г. план – 100 % локализация горячих частей
Li-ion накопители	линия в Калининграде запускается в 2025 г.; ячейки - частично импорт	к 2027 г. выпуск ≥ 2 ГВт•ч ячеек в год, доля локальных компонентов > 80 %

111

Импортозамещение в отрасли сегодня выступает не только условием энергетической безопасности, но и необходимым инструментом реализации климатических целей

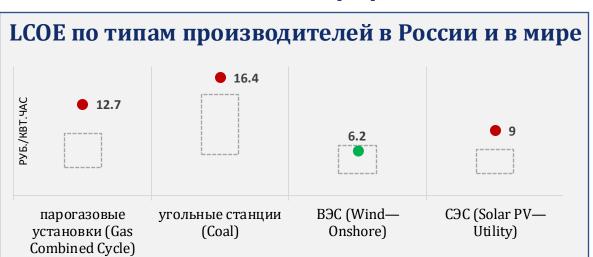
Нормативный базис низкоуглеродной трансформации отрасли

Несмотря на цель достижения углеродной нейтральности РФ к 2060 г., СНУР допускает рост выбросов ПГ к 2030-2035 гг.

Отсутствует оперплан для стратегии низкоуглеродного развития

Доктрина энергобезопасности РФ: реализация климатической политики и развитие **ВИЭ** рассматриваются в качестве вызовов для РФ

Энергостратегия 2050 предусматривает сохранение существующей структуры топливно-энергетического баланса Российской Федерации


СТАТУС-КВО

- климатическая повестка и стратегия развития отрасли сформированы в контексте высокой значимости ископаемого топлива в экономике
- делается ставка не на сокращение выбросов ПГ, а на увеличение их поглощения лесами и экосистемами

Параметры LCOE и результаты последних ДПМ ВИЭ

- LCOE в России превышает диапазон мирового LCOE по парогазовым, угольным станциям и по СЭС
- LCOE ветрогенерации соответствует мировому диапазону LCOE

Результаты отбора проектов ДПМ ВИЭ в 2025 году

Тип	Планируемая локация	LCOE	Мощность	Срок ввода
СЭС	Еврейская автономная обла <i>с</i> ть	14,1	5,2	2026
СЭС	Амурская область	13,3	5,2	2027
СЭС	Амурская область	12,6	5,3	2028
СЭС	Амурская область	10,5	25,0	2030
СЭС	Амурская область	10,5	23,7	2030
ВЭС	Пензенская область	6,6	250	2031
ГЭС	Республика Дагестан	20,6	5,0	2027

Дополнительный отбор ВИЭ на Дальнем Востоке

Тип	Планируемая локация	LCOE	Мощность	Срок ввода
СЭС				
	Еврейская автономная область	13,7	624	2026
СЭС				
	Амурская область	13,0	420	2027
ВЭС	Амурская область	11,7	90	2027
ВЭС	Амурская область	11,7	150	2027
ВЭС	Амурская область	11,1	140	2028
ВЭС	Хабаровский край	11,1	140	2028

- ✓ Наблюдается сохранение интереса инвесторов к участию в отборах ДПМ ВИЭ
- ✓ Часть объектов ВИЭ должна быть введена уже в 2026 году

ВОЗМОЖНОСТИ

IJKOJA . SKOHOW

Выводы

- ВИЭ дешевле традиционной генерации
- интерес инвесторов к ВИЭ
- высокая локализация производства ВИЭ, ГЭС и АЭС
- быстрое покрытие дефицита за счет ВИЭ
- обеспечение технологического суверенитета в производстве технологий энергоперехода

- дефицит мощностей
- потребность в обновлении фондов
- низкая инвестиционная привлекательность в строительстве ТЭС
- импортозависимость
- недостаточный нормативный базис в части климатической политики

СПАСИБО ЗА ВНИМАНИЕ

24.11 25.11 2025