ДИСКУССИОННЫЙ ЭКСПЕРТНЫЙ ФОРУМ

Экспертный консенсус в дискуссии в интересах страны

24.11 25.11 2025

Методологические вопросы прогнозирования спроса на электроэнергию на долгосрочную перспективу. Региональный аспект

Пильник Николай Петрович

к.э.н., заместитель декана факультета экономических наук НИУ ВШЭ, заведующий лабораторией макроструктурного моделирования экономики России НИУ ВШЭ

Подходы к прогнозированию спроса на электроэнергию: Общий контекст

Ключевая дихотомия: Прогнозный горизонт и методы

Долгосрочное прогнозирование (годы/десятилетия)

- **Цель:** Стратегическое планирование инфраструктуры, инвестиции в генерирующие мощности, разработка госпрограмм.
- **Методы:** Эконометрические модели (панельные регрессии, коинтеграция), сценарный анализ, оценка энергоёмкости ВВП/ВРП, системами динамики (Мазурова, Гальпернова и Локтионов, 2022).
- **Вызов:** Высокая неопределенность, зависимость от макроэкономических трендов и технологических сдвигов.

Краткосрочное прогнозирование (часы/дни/недели)

- **Цель:** Оперативное управление энергосистемой, балансировка, биржевая торговля, минимизация затрат.
- **Методы:** Классические (ARIMA, экспоненциальное сглаживание) и современные (рекуррентные нейронные сети LSTM, GRU, ансамбли деревьев LightGBM) (*Ibrahim et al., 2022; Shah et al., 2022*).
- Вызов: Учет высокой волатильности, сезонности, погодных аномалий и поведенческих факторов.

Эмпирически установленные детерминанты спроса (на основе обзора литературы):

Экономические:

ВВП/ВРП — основной прокси экономической активности (*Zhang et al., 2019; Alvarez et al., 2020*).

Промышленное производство и **структура экономики** (доля пром-ти, с/х, транспорта) (*Ozturk et al., 2017; Калина*).

Доходы домохозяйств и **уровень урбанизации** (Saidi et al., 2018).

Социально-демографические:

Численность населения (Zhou & Yang, 2016).

Энергоэффективность технологий и поведенческие паттерны.

Климатические и инфраструктурные:

Температурный режим (потребность на отопление и кондиционирование) (Muller, 2017; Гуров и Филатов, 2020).

Цены на энергоносители (Эйсфельд, 2007) и **уровень потерь в сетях**.

Специфика прогнозирования в российских условиях

Институциональные и рыночные особенности:

- История реформ: Поэтапный переход от плановой системы (РАО «ЕЭС России») к рыночной модели (ОРЭМ) с 2003 года. Процесс сопровождался структурными преобразованиями и приватизацией (Данилова, 2009; Кейлин, 2021).
- **Двойственность системы:** Сосуществование конкурентного оптового рынка и неценовых/технологически изолированных зон (ТИС) с регулируемыми тарифами (Постановление Правительства №1172).
- Доминирующая роль государства: Определение долгосрочных приоритетов через Генеральную схему размещения объектов электроэнергетики, что делает прогнозы госорганов ключевым ориентиром для участников рынка.
- **Актуальные тренды:** «Зелёный курс» и планы по наращиванию доли ВИЭ, цифровизация учёта, привлечение мелких потребителей на оптовый рынок (Борисов, Старченкова, Краснова, 2023).

Ключевой вывод для российской практики: Прямое заимствование стандартных зарубежных моделей часто неэффективно. Необходим акцент на региональной специфике, учёте структурных изменений и развитии гибридных методов, сочетающих эконометрику и сценарный анализ.

Методологические вызовы для долгосрочного регионального прогнозирования:

Структурные разрывы и нестабильность: Постоянные изменения правил рынка и внешние шоки (санкции) нарушают стабильность статистических взаимосвязей, выявленных на ретроспективных данных. «Мы наблюдаем не одну и ту же модель в разные моменты времени» (Баландин, 2005).

Проблема данных:

Нестационарность рядов: Даже после преобразований ряды ВРП и потребления не всегда становятся стационарными (Проведённый PANIC-mecm, Калина).

Короткие ряды: 20-25 наблюдений для каждого региона недостаточно для построения надёжных динамических моделей.

Агрегированность и пробелы в официальной статистике, особенно в разрезе отраслей.

Слабая формализуемость факторов: В официальных прогнозах используется широкий перечень экспертных оценок, что затрудняет верификацию и воспроизведение моделей внешними исследователями.

Анализ данных и методологические вызовы

Источники данных: Федеральная служба государственной статистики (Росстат), территориальные органы статистики, региональные топливно-энергетические балансы (ТЭБ).

Структура панели: Годовые данные за период 2000-2023 гг. по 78 субъектам РФ, 7 федеральным округам и РФ в целом. Панель изначально несбалансирована, потребовалась интерполяция и агрегация данных.

Ключевые переменные: Потребление электроэнергии, ВРП, численность населения, индекс промышленного производства (ИПП), доли отраслей (сельское хозяйство, промышленность, транспорт) в ВРП и в электропотреблении, температура.

Выявленные проблемы данных:

- **Нестационарность:** PANIC-тест и IPS-тест показали, что даже после преобразований (взятие первых разностей, логарифмирование) ряд ВРП и другие ключевые переменные остаются нестационарными.
- **Короткие ряды:** Всего 24 наблюдения на регион, что недостаточно для построения надежных динамических моделей и ведет к потере состоятельности оценок.
- **Структурные изменения:** Период охватывает multiple этапов реформы электроэнергетики, что создает структурные разрывы в данных.

Временной ряд	Единица измерения
Потребление электроэнергии	млрд кВт∙ч
Индекс физического объёма валового	% (к предыдущему периоду)
продукта	
Численность населения	% (к предыдущему периоду)
Дельта среднемесячной температуры в июле и январе	градусы цельсия
Индекс промышленного производства	% (к предыдущему периоду)
Доля сельского хозяйства в валовом продукте	% от валового продукта периода
Доля обработки и производства в валовом продукте	% от валового продукта периода
Доля транспорта в валовом продукте	% от валового продукта периода
Доля сельского хозяйства в потреблении электроэнергии	% электропотребление периода
Доля обработки и производства в потреблении электроэнергии	% электропотребление периода
Доля транспорта в потреблении электроэнергии	% электропотребление периода
Доля домохозяйств в потреблении электроэнергии	% электропотребление периода
Доля потерь в потреблении электроэнергии	% электропотребление периода

Результаты моделей для агрегированных данных (РФ и ФО)

Подход: Построение отдельных линейных регрессий для России в целом и каждого федерального округа с использованием относительных показателей и первых разностей для устранения тренда.

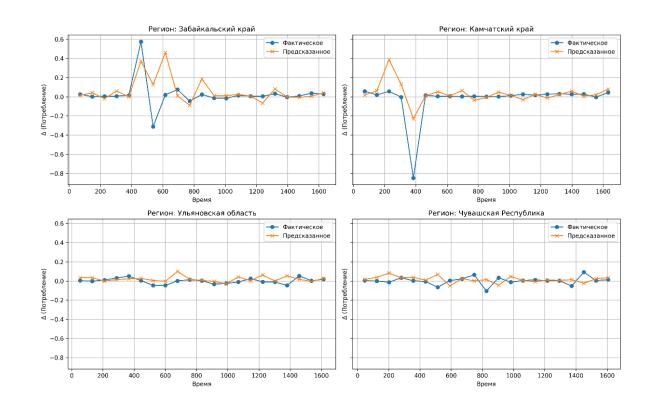
Результаты:

- Низкая объясняющая способность: Модели демонстрируют крайне низкую прогнозную точность. Например, для Дальневосточного и Уральского ФО МАРЕ превышает 400%.
- **Неустойчивость оценок:** Проверка методом бутстрапа показала, что доверительные интервалы коэффициентов либо содержат ноль, либо имеют ширину, превышающую трехкратную величину оценки.
- Экономически неинтерпретируемые результаты: В некоторых спецификациях знаки коэффициентов противоречат экономической логике (например, отрицательное влияние доли промышленности на потребление в Южном ФО).

Вывод для агрегированного уровня: Стандартные линейные модели не способны адекватно описать зависимость даже на уровне крупных экономических агрегатов. Это свидетельствует о сложности и нелинейности взаимосвязей, а также о сильном влиянии ненаблюдаемых региональных особенностей.

Субъект	Лучшая спецификация	MAPE, %
Российская Федерация	$\Delta CONS_{i,t}$ = 13.12 + 3.64 × $\Delta GRP_{i,t}$ + 1.71 × $\Delta GRP_{i,t-1}$ - 66.91 × $\frac{SGP_AGR_{i,t}}{SGP_AGR_{i,t-1}}$	61.05
Сибирский федеральный округ	$\begin{aligned} &CONS_{i,t} = 212.79 + 343.57 \times \frac{SGP_TRANS_{i,t}}{SGP_TRANS_{i,t-1}} - \ 38.92 \times \\ & \Delta SGP_TRANS_{i,t} - 6.64 \times \Delta SGP_TRANS_{i,t-1} \end{aligned}$	2.86
Приволжский федеральный округ	$CONS_{i,t} = 192.06 - 72.35 \times \frac{SGP_TRANS_{i,t-1}}{SGP_TRANS_{i,t-2}}$	3.09
Центральный федеральный округ	$\Delta \text{CONS}_{i,t} = 2.83 + 0.45 \times \Delta \text{GRP}_{i,t} - 13.05 \times \frac{\text{SGP_AGR}_{i,t}}{\text{SGP_AGR}_{i,t-1}} - 2.54 \times \Delta \text{SGP_TRANS}_{i,t-1}$	92.38
Дальневосточный федеральный округ	$CONS_{i,t} = 49.34 - 154.40 \times \frac{SGP_PROD_{i,t-1}}{SGP_PROD_{i,t-2}} + 4.99 \times \Delta SGP_PROD_{i,t-1}$	374.37
Уральский федеральный округ	$\Delta \text{CONS}_{i,t}$ = 3.17 + 0.58 × $\Delta \text{GRP}_{i,t}$ + 0.37 × $\Delta \text{GRP}_{i,t-1}$ + 2.69 × $\Delta \text{SGP_TRANS}_{i,t}$	434.94
Северо-западный федеральный округ	$\begin{aligned} &CONS_{i,t} \\ &= 106.14 - 292.45 \times \frac{SGP_TRANS_{i,t-1}}{SGP_TRANS_{i,t-2}} + 22.05 \times \Delta SGP_TRANS_{i,t-1} \end{aligned}$	5.41
Южный федеральный округ	$\begin{aligned} &CONS_{i,t} \\ &= 71.76 - 1.77 \times \Delta SGP_AGR_{i,t} + 449.18 \times \frac{SGP_PROD_{i,t}}{SGP_PROD_{i,t-1}} + 23.01 \\ &\times \Delta SGP_PROD_{i,t} \end{aligned}$	9.15

Результаты панельного анализа для регионов



Использованные модели: Pooled OLS, Fixed Effects (FE) и Random Effects (RE). Проводились тесты (Бройша-Пагана, Вальда, Хаусмана) для обоснованного выбора модели.

Ключевые результаты:

- Низкая объясняющая сила: R² within (объяснение вариации внутри региона) в лучших моделях не превышает 17%. Модели плохо описывают динамику изменения потребления внутри одного субъекта.
- Неустойчивость выбора модели: учет временных эффектов кардинально меняет выводы тестов. Без учета времени предпочтительна FE модель, с учетом времени RE модель. Это указывает на чувствительность результатов к спецификации.
- Сдвиг значимых факторов: В панельных регрессиях валовой региональный продукт (ВРП) часто теряет статистическую значимость. На первый план выходят отраслевые структурные переменные, в частности, доля промышленности и транспорта в общем объеме потребления электроэнергии.

Вывод: Панельные модели, хотя и являются стандартным инструментом, дают неудовлетворительные результаты для прогнозирования, а их параметры сильно зависят от способа учета неоднородности.

Углубленный анализ: Пространственные и динамические модели

Пространственные модели (SAR):

- **Цель:** Учесть взаимозависимость потребления в соседних регионах (эффект соседства).
- Результат: Пространственный лаг оказался статистически незначимым (p-value = 0.59). Прямые эффекты отраслевых переменных остались значимы, но их косвенное влияние на соседей было пренебрежимо мало.
- **Вывод:** Для российской электроэнергетической системы на годовых данных гипотеза о сильных пространственных зависимостях **не подтверждается**.

Динамические модели (AR):

- **Цель:** Учесть инерционность энергопотребления (влияние прошлых значений).
- **Результат:** Коэффициент при лаге зависимой переменной оказался **отрицательным**, что экономически неинтерпретируемо и противоречит логике (прошлый рост не должен влиять на текущее снижение).
- **Вывод:** Включение лагов приводит к переобучению и нарушению предпосылок моделей на имеющихся данных.

Кейс региона (Дагестан):

Попытка учесть инфраструктурные шоки (реконструкция сетей, запуск новой ТЭЦ) с помощью фиктивных переменных не увенчалась успехом. Модель осталась низкокачественной, а связь ВРП с потреблением была отрицательной, что может указывать на существенную роль ненаблюдаемых факторов, таких как нелегальное потребление.

Переменная	Коэффициент	p-value
const	50.0236	0.012
ВРП	-0.1145	0.000
ипп	0.0126	0.563
Население	-0.3432	0.071
Температура	0.0356	0.795
Dummy	0.7649	0.240

Ключевые методологические вопросы и выводы

1. Фундаментальная проблема данных

- **Нестационарность:** Ключевые переменные сохраняют нестационарность даже после преобразований, что ведет к риску ложных регрессий и нарушает предпосылки моделей.
- **Структурные разрывы:** Период 2000-2023 гг. включает этапы реформ и внешние шоки, создающие неоднородность в данных и неустойчивость выявленных связей.
- Короткие ряды: 24 годовых наблюдения недостаточно для построения надежных динамических моделей, что приводит к несостоятельности оценок.

2. Неадекватность агрегированных показателей

- **ВРП недостаточный прокси:** Интегральный показатель не отражает сдвиги в энергоемкости отраслей. Его связь с электропотреблением слаба и нестабильна на региональном уровне.
- Примат структурных факторов: Значимо большую объясняющую силу имеют доли отраслей в потреблении электроэнергии (промышленность, транспорт), а не ВРП.
- Отсутствие ключевых данных: В моделях не учтены энергоэффективность, износ инфраструктуры, нелегальное потребление.

3. Невозможность универсальной модели

- **Высокая региональная дифференциация:** Субъекты РФ радикально различаются по специализации, климату и инфраструктуре.
- **Неуниверсальность детерминант:** Факторы, значимые в одном регионе (добыча в Татарстане), не работают в другом (Краснодарский край). Поиск «единой формулы» для России бесперспективен.
- 4. Влияние ненаблюдаемых и институциональных факторов
- Регуляторные шоки: Постоянные изменения правил рынка и тарифной политики не могут быть адекватно смоделированы на ретроспективе.
- **Ненаблюдаемые эффекты:** Качество управления, историческая структура хозяйства не улавливаются даже моделями с фиксированными эффектами.
- Ограниченность формальных моделей: Ключевые решения в отрасли часто принимаются на основе стратегических и политических соображений, не формализуемых в количественных показателях.

Перспективы и рекомендации

Смена исследовательской парадигмы

- Представляется разумным отказ от поиска единой эконометрической модели в пользу плюралистичного подхода, сочетающего различные методики и учитывающего региональную специфику.
- Основной акцент должен сместиться с точечного прогнозирования на разработку сценариев, отражающих различные траектории макроэкономического, технологического и регуляторного развития.

Конкретные направления для дальнейших исследований

Работа с данными более высокой частоты: Переход на квартальные или месячные данные позволит лучше уловить динамику и сезонность, нивелируя проблему коротких временных рядов.

Разработка гибридных моделей: Комбинация эконометрических подходов с методами машинного обучения перспективна для учета нелинейностей и сложных взаимодействий между факторами.

Углубленный анализ на уровне регионов: Вместо панельного подхода для всех субъектов необходим фокус на построении индивидуальных моделей для ключевых или типичных регионов с привлечением детальных данных.

Формализация учета институциональных факторов: Необходима разработка методик для интеграции в модели качественной информации об инвестиционных программах, изменениях в регулировании и инфраструктурных проектах.

Сценарное моделирование: Поскольку точечный прогноз ненадежен, основным результатом должно стать построение нескольких реалистичных сценариев развития спроса в зависимости от ключевых драйверов.

СПАСИБО ЗА ВНИМАНИЕ

24.11 25.11 2025